
M7210 Lecture 36 Friday, November 16, 2012

F[x]-modules: Analysis of single linear map (continued)

Theorem. If A is any m × n matrix with entries from a PID R, then there is an m × m
matrix P with entries from R having an inverse with enteries from R and an n×n matrix

Q with entries from R having an inverse with enteries from R such that PAQ is diagonal.

Moreover, we may find P and Q such that

PAQ = diag {1, . . . , 1, dn−s+1, . . . , dn(x)},

where dn−s+1 is not a unit, di(x)|dj(x) if i < j.

Remarks concerning proof. The proof of this is similar to the proof of the diagonalization
procedure for integer matrices which we described in Lecture 23. If R = F[x], the proof is
even closer to what we have seen before, since we are able to use the Euclidean algorithm.
But it turns out that even when the Euclidean Algorithm is not available for R, the PID
condition is enough. A complete proof of this is given in Jacobson, Basic Algebra I ,
Chapter 3, section 7.

As in Lecture 35, let V be an F-vector-space with basis V = {v1, . . . , vn}, and let L : V → V
be a linear map, with (L;VV) = (aij). Let E = {e1, . . . , en} be the standard basis for F[x]n.
We studied the F[x]-modules and F[x]-module homomorphisms:

ker Φ
ι

−→ F[x]n
Φ

−→ (V, L),

where Φ(ei) = vi. We defined L̂ : F[x]n → F[x]n by L̂(ei) =
∑n

j=1 aijej and we proved

that ker Φ has an F[x]-module basis K = {k1, . . . ,kn}, where ki = xei − L̂(ei). Thus,

(ι;KE) =





x − a11 −a12 · · · −a1,n

−a21 x − a22 · · · −a2,n

...
... · · ·

...
−an1 −an2 · · · x − an,n



 = xI − A.

If we apply the theorem above to the matrix xI − A, we get n × n matrices P and Q
with entries from F[x], having inverses with enteries from F[x], such that P (xI − A)Q
is diagonal. Note that there will be no zeros on the diagonal of P (xI − A)Q, since the
product of the diagonal entries is equal to a unit times the determinant of xI −A, and the
determinant is a monic polynomial of degree n. Indeed, we may find P and Q such that

P (xI − A)Q = diag {1, . . . , 1, dn−s+1, . . . , dn(x)},

where dn−s+1 is not a unit, di(x)|dj(x) if i < j and all the di(x) are monic.

We are representing vectors as rows and are allowing our matrices to act on the right. We
can view P , therefore, as a change of basis matrix on ker Φ. Letting K′ denote the new
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basis, we have P = (idker Φ;K′K), and the elements of K′ are represented with respect to
K by the rows of P .

Similarly, Q can be viewed a change of basis matrix on F[x]n. If E ′ denotes the new basis,
then Q = (idF[x]n ; EE ′). The rows of Q−1 = (idF[x]n ; E ′E) represent the elements of E ′ with
respect to E . Each element of E ′ generates a free cyclic summand of F[x]n. The last s
elements of E ′—i.e., the elements of F[x]n represented with respect to E by the last s rows
of Q−1—map via Φ to generators of cyclic summands of the F[x]-module (V, L). Thus,
if (q∗i1 · · · q∗in) is the ith row of Q−1 and di(x) 6= 1, then zi =

∑n

j=1 q∗ijvj ∈ (V, L) is a
generator of a cyclic summand of (V, L), and

F[x]zi
∼= F[x]/(di(x)), i = 1, . . . , n.

Moreover,

(V, L) ∼=
⊕

zi 6=1

F [x]zi. (2)

Exercise. In the discussion above, we used the following fact implicitly:

Lemma. Let A be a ring and for each i ∈ I, let Mi be an A-module and Ki ⊆ Mi

be a sub-A-module. Then
⊕

i∈I Ki is a sub-A-module of
⊕

i∈I Mi and

⊕

i∈I

Mi/Ki
∼=

⊕

i∈I

Mi

/⊕

i∈I

Ki. (1)

Where and how was this used? Prove (2).

Observe that dimF F [x]zi = deg zi. The images of zi under L,

{zi, L(zi), L
2(zi), . . . , L

n−1(zi)},

form an F-vector-space basis for F [x]zi. Note that
∑n

i=1 deg zi = n, so if any of the di(x)
is not linear, then d1(x) = 1. Now we can see that as an F-vector space, V can be written
as a sum of subspaces Vi, each of which is the underlying F-vector-space of F[x]zi. Each
Vi is invariant under L, in the sense that L(Vi) ⊆ Vi. The action of L on each Vi can be
understood using the ideas in Lecture 34.

Example. See the example from Jacobson, Basic Algebra I, pages 198-9.
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